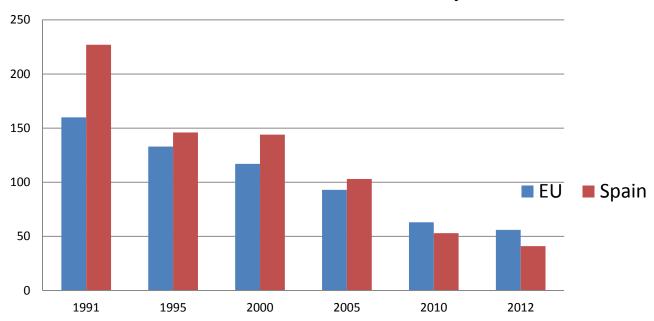
Topic 2: Economics of Traffic Safety

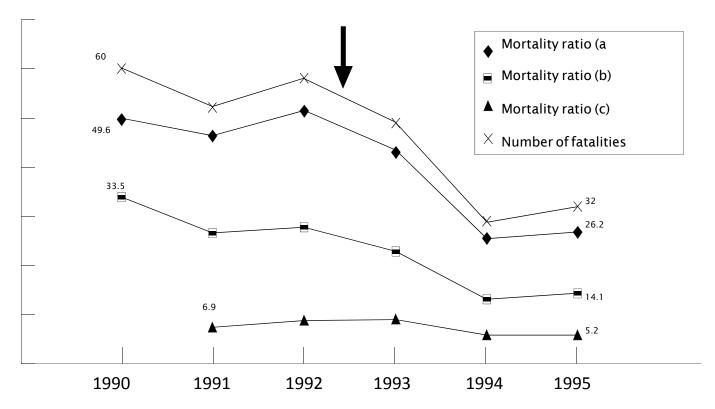


Traffic Safety Signs – Just for Fun

Traffic Fatalities Are Decreasing

Traffic Deaths / Million People

Reasons Cited in the Literature


- Automobiles are safer (seat belts, airbags, electronic sensors)
- Roads are safer (more limited-access roads, fewer level crossings)
- Drivers are safer (better education, higher minimum driving age)
- Better enforcement of traffic laws
- Public interventions (stricter DUI* laws, helmet laws for 2-wheeled motor vehicles)

Spain's Helmet Law

- Federal road safety law required use of helmets by all 2-wheel motor vehicle (MV) drivers and passengers
- Extended to urban areas in 1992
- Arguments
 - Pro: Helmets reduce the severity of injury and the probability of death
 - Con: People compensate by taking more risks when they wear helmets
- Josep Ferrando compared deaths of 2-wheel MV occupants in Barcelona before and after the law took effect ("pretest-posttest" design)

Ferrando's Results

Mortality trends among two wheel vehicle users, Barcelona, 1990–95. Mortality Ratio: (a) = $x \cdot 10^7$ vehicle km; (b) = $x \cdot 10^5$ two wheel vehicles; (C) = $x \cdot 10^3$ two wheel crashes.

Josep Ferrando, et al., "Impact of a Helmet Law on Two Wheel Motor Vehicle Crash Mortality in a Southern European Urban Area," <u>Injury Prevention</u>, 6 (2000), 184-188

Comments on Ferrando

- What is lacking from this study?
- How can the design be made stronger?

Cohen and Einav's Study of Seat Belt Laws

- Alma Cohen and Liran Einav studied the effect of automobile seat belt laws in the U.S.
- States have a great deal of autonomy in the U.S. federal system
- During the observation period, from 1983 to 1997, 49 of 50 states adopted seat belt laws
 - The late-adopting states are a control group for early adopters
- Outcomes are traffic deaths among car occupants and deaths among non-occupants (pedestrians and 2-wheel MVs)
 - Laws affect car occupants directly and indirectly through the compensating effect
 - Changes in non-occupant deaths are due only to the compensating effect

Cohen and Einav's Empirical Model

$$Y_{st} = \beta_0 + \beta_1 USE_{st} + \beta_2 X_{st} + \beta_3 STATE_s + \beta_4 YEAR_t + u_{st}$$

Y = traffic fatalities in state s in year t

USE = seat belt use in state s in year t

X = time-varying characteristics of state s in year t

STATE = fixed effects for states

YEAR = fixed effects for years

u = error term for state s in year t

The Endogeneity Problem

- Seat belt use might be correlated with unmeasured features of states that change over time
- Would bias the effect of seat belt use, making the estimate of β_1 too large or too small
- They 'instrument' for seat belt use with the mandatory seat belt law
 - It's still possible that states passed laws because they faced in increase in traffic fatalities
 - But all states eventually passed laws
 - Passing a seat belt law usually took several years of debate and is not likely to be correlated with the error term in the traffic fatality equation

Cohen & Einav's Results

OUTCOME	KEY VARIABLE	COEFFICIENT
OCCUPANT FATALITIES PER VEHICLE MILE	SEAT BELT USE	0052
LN OCCUPANT FATALITIES PER VEHICLE MILE	LN SEAT BELT USE	133
NON-OCCUPANT FATALITIES PER VEHICLE MILE	SEAT BELT USE	NO EFFECT
LN NON-OCCUPANT FATALITIES PER VEHICLE MILE	LN SEAT BELT USE	NO EFFECT

- Seat belt use reduced occupant fatalities with no indication of a compensating effect
- Focusing on the logarithmic equation, a one-percent increase in seat belt use reduces occupant fatalities by .13%

Alma Cohen and Liran Einav, "The Effects of Mandatory Seat Belt Laws on Driving Behavior and Traffic Fatalities," <u>Review of Economics and Statistics</u>, 85:4 (November, 2003), 828-843

Blood Alcohol Content (BAC) Laws

- Blood Alcohol Content (BAC), measured in grams per deciliter (g/dl), is an objective indicator of DUI
- Spain: Surpassing the limit of 0.05% carries a €500 fine. Driving with BAC > 0.12% is a crime with up to 6 months imprisonment and license suspension up to 4 years.
- In the U.S., states could set their own limits until 2004, when 0.08% became the national standard
 - Corresponds to 5 bottles of beer in 2 hours for average man and 3 for average woman
 - Prior to 2004, many states passed laws that reduced the threshold BAC to 0.08%

Thomas Dee's Article

- Presents evidence on how states' 0.08 BAC laws affected traffic fatalities
- Prior studies found mixed evidence
- Dee's work improves on past studies in several ways:
 - Data from 1982-1998 include "before and after" periods for 14 states that changed their laws
 - The study controls for observed influences on traffic fatalities as well as state and time effects

"Difference-in-Differences" Analysis

- Dee used the same method as did Cohen and Einav
 - Known as 'difference-in-differences' analysis
 - Also known as 'pretest-posttest with untreated control group'
- Compare Δoutcome in the treated group with Δoutcome in the untreated control group
- Effect of Treatment = Δoutcome treated –
 Δoutcome control
- Very common design in observational research

Dee's Results

<u>Variable</u>	<u>Coefficient</u>	<u>SE</u>	
0.08 BAC law	-0.072	0.028	
0.10 BAC law	-0.053	0.020	

Control group = states with no BAC law

Note: in a semi-logarithmic equation, the percentage change in the dependent variable with respect to a 1-unit change in LAW is approximately equal to exp(coefficient). Therefore, states with 0.08 BAC laws have about 7% fewer traffic fatalities than states with no law. Can you do the math for a .10 BAC law?

Interpretation

- 0.10 BAC laws reduce traffic fatalities by 5.2% and
 0.08 laws contribute another 1.8% reduction
- On the basis of 41,471 traffic deaths in 1998 in the U.S., the marginal contribution of a national 0.08 BAC law would have been 746 lives saved
- The value of saving a life is between \$3 \$7
 million with a midpoint of \$5 million
- The annual savings from a national 0.08 BAC law would have been \$3.73 billion

The Value of a Life

- Perfect traffic safety is not possible at any price
- But society needs to decide how much it's worth to make driving (and many other things) safer
- Workers' willingness to accept risk for higher wages is one method to place a value on lifesaving
 - Suppose jobs with .001 excess death rate pay €3 per hour more than safe jobs
 - The value of lifesaving is €3 x 1500 hours of work per year x 1,000 = €3 million
 - This is the value of a statistical life, which is appropriate for most projects that improve traffic safety

Richard Thaler and Sherwin Rosen, "The Value of Saving a Life: Evidence from the Labor Market," in <u>Household Production and Consumption</u>, ed. by N.E. Terleckyj, 1975

"3D" Analysis

- Most alcohol-related traffic fatalities occur at night or on the weekend
- Therefore, the effect of a 0.08 BAC law should be greater during those periods
- This is called 'difference-in-difference-in differences' or '3D' analysis
- Dee compared the effect of a 0.08 BAC law on fatal crashes at night or weekend vs. other times vs. no law
- Results of this test were mixed:
 - Weekend vs. weekday effect = -0.028
 - Night and day effects were not significantly different

Dee Might Have Done More

- Studies show that people anticipate new laws
 - Behavior changes between the time the law is passed and when it becomes effective
- Enforcement of the law may also change over time after it has gone into effect
 - Enforcement may become more or less strict
- Dee could have tested for these anticipation and enforcement effects

Dram Shop Laws

- Servers of alcohol may be held accountable for injuries stemming from accidents caused by an obviously intoxicated adult patron or a minor patron
- Not all drinkers abuse alcohol, but 40-63% of drivers arrested for drunken driving consume their alcohol in bars or restaurants
 - Dram shop liability will increase the price of drinking in bars
 - The cost of abusive drinking will increase relative to the cost of non-abusive drinking
- Economic theory predicts that server liability will have a large effect
 - There are few servers and many bar patrons
 - Servers can change their behavior to reduce the risk that patrons get drunk

Sloan's Study

- Sloan, et al., analyzed the Behavioral Risk Factor
 Surveillance Survey (BRFSS) for (a) drinking at all, (b)
 binge drinking, and (c) drink and drive
- 49% of U.S. adults drink, 26% of drinkers "binge" (5+ drinks on one occasion in past month) and 5% drink and drive
- Explanatory variables in their model included personal characteristics, price, and state legal standards

Frank Sloan, et al., <u>Drinkers, Drivers, and Bartenders</u>, 2000

Results for Dram Shop Law

Probability of Behavior	Coefficient	P-Value	
Any alcohol consumption	-0.11	<.01	
Binging, conditional on drinking	-0.013	Not Significant	
Drink and drive	-0.039	<.05	
Adult Motor Vehicle Fatality Rates*			
Total	-0.40	<.01	
Alcohol-related	-0.31	<.05	
Single car at night	-0.24	<.01	

^{*}similar findings for motor vehicle fatality rates for minors